Quantum Computing market 2022 – Industry Growth by 2035

Roots Analysis has announced the addition of “Quantum Computing in Drug Discovery Services Market, 2023-2035” report to its list of offerings.

Key Market Insights

 Presently, over 45 players around the globe claim to offer quantum computing services across different steps of drug discovery
 Leveraging their expertise, 86% stakeholders offer such services across target discovery / identification, primarily focusing on oncological disorders
 In pursuit of gaining a competitive edge, manufacturers claim to be steadily expanding their existing capabilities in order to enhance their service portfolio related to quantum computing
 Grants worth over USD 70 million have been awarded to various organizations that have actively undertaken R&D efforts to evaluate the potential of quantum computing in drug discovery
 A considerable increase in the partnership activity has been witnessed in the past few years; close to 50% of the collaborations were inked by firms based in the same region
 More than 30 players, worldwide, claim to offer hardware-as-a-service for quantum computing in drug discovery, and have developed the required expertise in different types of computational approaches
 Majority of the quantum computing hardware providers, headquartered in North America, were established before the year 2000; in fact, ~50% of the overall market landscape is catered to by large companies.
 The rise in the adoption of quantum computing in the biopharmaceutical industry is anticipated to create profitable business opportunities for both software and hardware providers
 Based on the pioneer-migrator-settler map, we have classified the software providers into different categories; a selection of pioneers is expected to provide valuable offerings to lead the market in the longer term
 We expect the market to grow at an annualized rate of 14% in the coming decade; the opportunity is likely to be well distributed across types of drug discovery services, therapeutic areas and key geographical regions

Table of Contents

1. PREFACE
1.1. Introduction
1.2. Key Market Insights
1.3. Scope of the Report
1.4. Research Methodology
1.5. Frequently Asked Questions
1.6. Chapter Outlines

2. EXECUTIVE SUMMARY

3. INTRODUCTION
3.1. Overview of Quantum Computing in Drug Discovery
3.2. Drug Discovery and Development Timeline
3.3. Historical Evolution of Computational Drug Discovery Approaches
3.4. Classification of Quantum Computing Approaches
3.5. Applications of Quantum Computing in Drug Discovery Process
3.6. Advantages of Quantum Computing in Drug Discovery
3.7. Challenges Associated with Quantum Computing in Drug Discovery
3.8. Future Perspectives

4. MARKET LANDSCAPE: SOFTWARE PROVIDERS
4.1. Quantum Computing Software Providers: Overall Market Landscape
4.1.1. Analysis by Year of Establishment
4.1.2. Analysis by Company Size
4.1.3. Analysis by Location of Headquarters
4.1.4. Analysis by Business Capabilities
4.1.5. Analysis by Platform Capabilities
4.1.6. Analysis by Type of Drug Discovery Service(s) Offered
4.1.7. Analysis by Type of Molecule(s) Supported
4.1.8. Analysis by Compatible Computational Approaches
4.1.9. Analysis by End User(s)
4.1.10. Analysis by Therapeutic Area(s)

5. COMPANY COMPETITIVENESS ANALYSIS
5.1. Methodology and Key Parameters
5.2 Scoring Criteria
5.3. Company Competitiveness Analysis: Players based in North America (Peer Group I)
5.4. Company Competitiveness Analysis: Players based in Europe (Peer Group II)
5.5. Company Competitiveness Analysis: Players based in Asia-Pacific and Rest of the World (Peer Group III)

6. COMPANY PROFILES: SOFTWARE PROVIDERS
6.1. Accenture
6.1.1. Company Overview
6.1.2. Financial Information
6.1.3. Service Portfolio
6.1.4. Recent Developments and Future Outlook

6.2. Atos
6.3. Fujitsu
6.4. Huawei
6.5. Microsoft
6.6. Xanadu
6.7. XtalPi


7. MARKET LANDSCAPE: HARDWARE PROVIDERS
7.1. Quantum Computing Hardware Providers: Overall Market Landscape
7.1.1. Analysis by Year of Establishment
7.1.2. Analysis by Company Size
7.1.3. Analysis by Region of Headquarters
7.1.4. Analysis by Location of Headquarters
7.1.5. Analysis by Type of Offering(s)
7.1.6. Analysis by Data Storage on Cloud
7.1.7. Analysis by Compatible Computational Approaches
7.1.8. Analysis by Type of Offering(s) and Compatible Computational Approaches

8. COMPANY PROFILES: HARDWARE PROVIDERS
8.1. Amazon Web Services
8.1.1. Company Overview
8.1.2. Financial Information
8.1.3. Service Portfolio
8.1.4. Recent Developments and Future Outlook

8.2. IBM
8.3. Microsoft

9. ACADEMIC GRANTS ANALYSIS
9.1. Analysis Methodology
9.2. Key Parameters
9.3. Analysis by Year of Grant
9.4. Analysis by Amount Awarded
9.5. Analysis by Support Period
9.6. Analysis by Study Section
9.7. Word Cloud Analysis: Emerging Focus Areas
9.8. Analysis by Administering Institute Center
9.9. Analysis by Type of Grant
9.10. Analysis by Activity Code
9.11. Analysis by Purpose of Grant
9.12. Analysis by Administering Institute Center and Support Period
9.13. Prominent Program Officers: Analysis by Number of Grants
9.14. Analysis by Location of Recipient Organizations
9.15. Analysis by Type of Organization
9.16. Popular Recipient Organizations: Analysis by Number of Grants
9.17. Popular Recipient Organizations: Analysis by Amount Awarded

10. PARTNERSHIPS AND COLLABORATIONS
10.1. Partnership Models
10.2. Quantum Computing in Drug Discovery, Drug Manufacturing and Other Services: Partnerships and Collaborations
10.3. Analysis by Year of Partnership
10.4. Analysis by Type of Partnership
10.5. Analysis by Year and Type of Partnership
10.6. Most Active Players: Analysis by Number of Partnerships
10.7. Word Cloud Analysis: Key Focus Areas
10.8. Analysis by Type of Continent
10.9. Analysis by Company Size and Type of Partnership
10.10. Local and Intercontinental Agreements
10.11. Intercontinental and Intracontinental Agreements

11. USE CASE STUDY
11.1. Overview of Quantum Computing
11.2. Applications of Quantum Computing Across Various Industries
11.3. Upcoming Trends in Quantum Computing
11.4. Future Perspectives

12. PORTER’S FIVE FORCES ANALYSIS
12.1. Methodology and Assumptions
12.2. Key Parameters
12.2.1. Threats of New Entrants
12.2.2. Bargaining Power of Buyers
12.2.3. Bargaining Power of Suppliers
12.2.4. Threats of Substitute Products
12.2.5. Rivalry among Existing Competitors

13. BLUE OCEAN STRATEGY: A STRATEGIC GUIDE FOR START-UPS TO ENTER INTO HIGHLY COMPETITIVE MARKET
13.1. Overview of Blue Ocean Strategy
13.1.1 Red Oceans
13.1.2 Blue Oceans
13.1.3 Comparison of Red Ocean Strategy and Blue Ocean Strategy
13.1.4. Quantum Computing in Drug Discovery Services Market: Blue Ocean Strategy and Shift Tools
13.1.4.1. Value Innovation
13.1.4.2. Strategy Canvas
13.1.4.3. Four Action Framework
13.1.4.4. Eliminate-Raise-Reduce-Create (ERRC) Grid
13.1.4.5. Six Path Framework
13.1.4.6. Pioneer-Migrator-Settler (PMS) Map
13.1.4.7. Three Tiers of Non-customers
13.1.4.8. Sequence of Blue Ocean Strategy
13.1.4.9. Buyer Utility Map
13.1.4.10. The Price Corridor of the Mass
13.1.4.11. Four Hurdles to Strategy Execution
13.1.4.12. Tipping Point Leadership
13.1.4.13. Fair Process

14. MARKET SIZING AND OPPORTUNITY ANALYSIS
14.1. Forecast Methodology and Key Assumptions
14.2. Quantum Computing in Drug Discovery Services Market, 2023-2035
14.2.1. Quantum Computing in Drug Discovery Services Market, 2023-2035: Analysis by Type of Drug Discovery Service Offered
14.2.1.1. Quantum Computing in Drug Discovery Services Market for Target Identification / Validation, 2023-2035
14.2.1.2. Quantum Computing in Drug Discovery Services Market for Hit Generation / Lead Identification, 2023-2035
14.2.1.3. Quantum Computing in Drug Discovery Services Market for Target Lead Optimization, 2023-2035

14.2.2. Quantum Computing in Drug Discovery Services Market, 2023-2035: Analysis by Therapeutic Area
14.2.2.1. Quantum Computing in Drug Discovery Services Market for Cardiovascular Disorders, 2023-2035
14.2.2.2. Quantum Computing in Drug Discovery Services Market for CNS Disorders, 2023-2035
14.2.2.3. Quantum Computing in Drug Discovery Services Market for Dermatological Disorders, 2023-2035
14.2.2.4. Quantum Computing in Drug Discovery Services Market for Endocrine Disorders, 2023-2035
14.2.2.5. Quantum Computing in Drug Discovery Services Market for Gastrointestinal Disorders, 2023-2035
14.2.2.6. Quantum Computing in Drug Discovery Services Market for Immunological Disorders, 2023-2035
14.2.2.7. Quantum Computing in Drug Discovery Services Market for Infectious Diseases, 2023-2035
14.2.2.8. Quantum Computing in Drug Discovery Services Market for Musculoskeletal Disorders, 2023-2035
14.2.2.9. Quantum Computing in Drug Discovery Services Market for Oncological Disorders, 2023-2035
14.2.2.10. Quantum Computing in Drug Discovery Services Market for Respiratory Disorders, 2023-2035
14.2.2.11. Quantum Computing in Drug Discovery Services Market for Others, 2023-2035

14.2.3. Quantum Computing in Drug Discovery Services Market, 2023-2035: Analysis by Key Geographical Regions
14.2.3.1. Quantum Computing in Drug Discovery Services Market in North America, 2023-2035
14.2.3.1.1. Quantum Computing in Drug Discovery Services Market in the US, 2023-2035
14.2.3.1.2. Quantum Computing in Drug Discovery Services Market in Canada, 2023-2035

14.2.3.2. Quantum Computing in Drug Discovery Services Market for Europe, 2023-2035
14.2.3.2.1. Quantum Computing in Drug Discovery Services Market in the UK, 2023-2035
14.2.3.2.2. Quantum Computing in Drug Discovery Services Market in France, 2023-2035
14.2.3.1.3. Quantum Computing in Drug Discovery Services Market in Germany, 2023-2035
14.2.3.1.4. Quantum Computing in Drug Discovery Services Market in Rest of the Europe, 2023-2035

14.2.3.3. Quantum Computing in Drug Discovery Services Market in Asia-Pacific, 2023-2035
14.2.3.3.1. Quantum Computing in Drug Discovery Services Market in China, 2023-2035
14.2.3.3.2. Quantum Computing in Drug Discovery Services Market in Japan, 2023-2035
14.2.3.3.3. Quantum Computing in Drug Discovery Services Market in Rest of Asia-Pacific, 2023-2035

14.2.3.4. Quantum Computing in Drug Discovery Services Market in Latin America, 2023-2035
14.2.3.5. Quantum Computing in Drug Discovery Services Market in Middle East and North Africa, 2023-2035

15. EXECUTIVE INSIGHTS

16. APPENDIX 1: TABULATED DATA

17. APPENDIX 2: LIST OF COMPANIES AND ORGANIZATIONS

To view more details on this report, click on the link
https://www.rootsanalysis.com/reports/quantum-computing-in-drug-discovery.html

You may also be interested in the following titles:
Lab Automation Market

Cannabis Testing Market



About Roots Analysis
Roots Analysis is a global leader in the pharma / biotech market research. Having worked with over 750 clients worldwide, including Fortune 500 companies, start-ups, academia, venture capitalists and strategic investors for more than a decade, we offer a highly analytical / data-driven perspective to a network of over 450,000 senior industry stakeholders looking for credible market insights.

Contact:
Ben Johnson
+1 (415) 800 3415
Ben.johnson@rootsanalysis.com


#QuantumComputingMarket #QuantumComputingMarketSize #quantumcomputinginhealthcare #quantumcomputingindrugdiscovery #quantumcomputing
Quantum Computing in Drug Discovery | Industry Analysis | Market Size | 2035
Quantum Computing in Drug Discovery Services Market, driven by over 80 companies offering services, is likely to grow at 14% CAGR
WWW.ROOTSANALYSIS.COM
0 0 Reacties 0 Aandelen
Sponsor